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1. Introduction

Because of their computational advantages, zonally-averaged

chemical-radiative-transport models are widely used to investigate the

distribution of chemical species and their change due to the anthropogenic

chemicals in the lower and middle atmosphere. In general, the Lagrangian-

mean formulation would be ideal to treat transport due to the zonal mean

circulation and eddies. However, the Lagrangian formulation is difficult to

use in practical applications (McIntyre, 1980). The most widely-used

formulation for treating global atmospheric dynamics in two-dimensional

models is the transformed Eulerian mean (TEM) equations (Andrews and

McIntyre, 1976). The residual mean meridional circulation (RMMC) in the

TEM system is used to advect tracers. In this study, we describe possible

solution techniques for obtaining the RMMC in the LLNL two-dimensional

chemical-radiative-transport model. In the next section, the formulation

will be described. In sections 3 and 4, possible solution procedures will be

described for a diagnostic and prognostic case, respectively.



2. Formulation

The set of equations in the TEM formulation are given as
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where   E  is the eddy heat flux convergence and µ  is the mixing ratio of

chemical species. The other notations have their usual meanings (see, for

example, Andrews et al., 1987). The RMMC obtained from the first four

equations is used to advect chemical tracers in (5).

The first four equations constitute a closed set of equations including

two prognostic equations and two diagnostic equations with four unknown

variables. The solution procedures are dependent on treatment of the

temporal variations of the zonal wind and temperature. If the temporal

variation of the temperature is negligible or can be specified, then the

system becomes diagnostic and it is easier to solve for the circulation as

only two equations are needed (see description in the next section). A

disadvantage of this diagnostic system is that the radiative and



photochemical feedback on the dynamics is neglected. To handle this

feedback, temperature and zonal wind should be treated as prognostic

values. In this prognostic system, temperature and zonal wind are

calculated as well as the RMMC, using all four equations (1) to (4).

3. Diagnostic system

If the temporal variations of zonal wind and temperature are ignored

or known, only two equations, including (4) and either (1) or (3), are

needed to solve for the RMMC. Choosing which equation between (1) or (3)

depends on the difficulty of estimating the Eliassen-Palm (EP) flux

divergence,   ∇ ⋅ F, and the diabatic heating rate,   Q . For two-dimensional

models, the thermodynamic energy equation is generally used as the EP

flux divergence is not computed in those models. Calculating the RMMC

from the zonal momentum equation is useful for certain studies, for

example, recently, Rosenlof and Holton (1993) obtained the residual

circulation they calculated based on the EP flux divergence from the

observed data.

The solution procedure for the diagnostic equation system is easier

than that of prognostic system, but there are some special difficulties to

resolve. As noted by Tung (1982), the two variables of interest,   v
∗ and   w

∗,

require two equations for solution; and furthermore, there is a constraint

that must be satisfied. The constraint is given as
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The problem is that the meridional velocity in the integrand is itself

unknown. The physically correct way of adjusting heating rates is using

heating rates on isentropic surfaces (Yang et al., 1990; Choi and Holton,

1991) on which the meridional advection of heat vanishes. This isentropic

adjustment of heating rates is discussed in Appendix A. However, in the

most two-dimensional models, isobaric coordinates are used and

interpolation of heating rates onto isentropic surface is not very simple.

For the isobaric system, Shine (1989) discussed several methods of

satisfying the above constraint. The most popular way is subtracting the

global average of the vertical velocity from velocities at each grid point on

isobaric surfaces. In this case the heating rates given originally is not

changed before and after calculation. Some scientists (e.g., Rosenfield et al.,

1987) adjust the heating rates for the global average heating to vanish

before calculation of the circulation. As shown in the Appendix B, this

procedure makes the global average of the vertical circulation multiplied

by potential temperature vanish and could be a good approximation of (6a)

in the middle atmosphere.

Below, we provide two methods for the solution of the diagnostic

equation set.

a. Successive substitution

The vertical velocity in (3) can be rewritten by
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The first step is assuming the zero meridional velocity. The vertical

velocity can then be obtained directly and can be used to obtain the

meridional velocity through the continuity equation. This is the procedure

used by Dunkerton (1978) for the winter solstice condition. To include the

effect of the meridional advection, the meridional velocity is then

substituted to obtain the vertical velocity. This procedure continues until

the solution converges. The vertical velocity should be modified at each

time step to satisfy the constraint (6a). Examples of vertical and meridional

velocities calculated from the total heating rates given in Fig. 1 from the

LLNL 2-D model are shown in Figs. 2 and 3.

An assumption in this method is that the meridional advection of

heat is much smaller than the vertical advection. This assumption is true in

the middle atmosphere where the slopes of isentropic surfaces are not

steep. In the troposphere, however, it is not always applicable. This

method of successive substitution does not always converge. Even though

the solution converges, the number of iterations in the model domain

including the troposphere is much bigger than that of the region including

the middle atmosphere only.

If we knew whether the iteration would succeed or fail before

calculation, it would be very convenient. There is a convergence criteria of

the successive substitution method for simple nonlinear equations (for

example, see Pearson, 1986). We are not aware if there is a similar criteria

in this case.

b. Using an advection equation



When the method of successive substitution does not yield a

converging solution, a new technique is required. Instead of solving the

two equations simultaneously, one equation can be constructed from two

equations utilizing the stream function and can then be solved. An example

of similar technique is found in Holton and Choi (1988). A discussion about

the stream function is found in Appendix C.

Here we define the stream function ψ  by
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then the thermodynamic energy equation becomes an advection equation

of the stream function
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where the isentropic slope   S  and heating     Q̃  is defined by
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The numerical scheme we chose to solve (9) is the trapezoidal

implicit scheme (Haltiner and Williams, 1980). This scheme is numerically

stable. A disadvantage of this implicit scheme is that we have to invert a

matrix to get a solution. However, the matrix is tridiagonal and therefore

can be easily solved by the tridiagonal algorithm (see, for example,



Richtmyer and Morton, 1967, Roache, 1972). A more serious problem in

this scheme is that we cannot choose the direction of integration freely.

The factor determining the direction is the magnitude of the grid intervals

and   S . The possible direction of integration is meridional one in this case.

In meridional integration the boundary condition at the top of the model

domain is required. For this top boundary condition, the stream function is

obtained using (8b) from the vertical velocity in Fig. 2. This stream

function (Fig. 4) can be compared with the results from those calculated by

the trapezoidal implicit scheme.

To calculate the RMMC from the heating rate in Fig. 1, adjustment of

heating rate prior to the calculation is required since the solution

technique does not have a procedure satisfying the constraint (6a). In this

study, we applied the zero net heating condition although it is not always

satisfactory in the troposphere.

The solution procedure takes three steps. The first step is an

integration from the South pole to the North pole by using the zero surface

value and prescribed value at the top. The result from this step is shown in

Fig. 5a. In an ideal case, the values of stream function would turn out to be

exactly zero at the North pole. While the stream function is close to zero in

the middle atmosphere at the North pole, it is different from zero in the

troposphere. In the second step, the integration takes from the North pole

to the South pole (Fig. 5b). And in the third step, constructing a set of

stream function out of two by using Southern Hemispheric value from Fig.

5a and Northern Hemispheric value from Fig. 5b. At the equator, the

stream function should be matched. The result is shown in Fig. 5c. The

justification of this method lies in the fact that the heating rates is not so

accurate as boundary conditions in this problem. The boundary conditions



are more accurate and valuable than heating rates and therefore we have

to utilize this fact.

4. Prognostic system

The four equations from (1) to (4) can be combined into an equation

for stream function following Garcia and Solomon (1983). The temporal

variation of the zonal wind and temperature can be removed through the

thermal wind equation if the tangent factor of the relationship is neglected.

The stream function χ   is defined by
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The combined equation for χ  is as follows:
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Among the above coefficients,   Cyy  and   Cy  ,are slightly different from

what are given by Garcia and Solomon (1983) who used the temperature

instead of potential temperature in the thermodynamic energy equation.

Also the last term in the left hand side is not neglected. Contrast to the

diagnostic system, the knowledge of both EP flux divergence and the total

diabatic heating is required to solve (11). At the side boundary, the stream

function can be set to be zero. The bottom boundary condition is either

specified (Brasseur et al., 1990) or is calculated through the "downward

control principle" (Holton, 1990; Haynes et al., 1991; Garcia, 1991; Rosenlof

and Holton, 1993). At the top     ∂χ ∂/ z = 0  is usually specified.

In the LLNL two-dimensional model, one solution for (11) is obtained

by the method suggested by Lindzen and Kuo (1969). The numerical

scheme is described in Choi and Wuebbles (1993) in detail.

To test the solution technique we need the thermal and momentum

forcing. In the first step, we obtain the meridional circulation by the

successive substitution from the given heating rates (Fig. 6) with assuming

zero temporal variability of wind and temperature. The vertical and

meridional velocities obtained this way (Figs. 7 and 8) and the zonal wind

and temperature are used to construct the EP flux divergence and heating



rates through (1) and (3) respectively. The heating rates and the zonal

momentum forcing (EP flux divergence divided by density) constructed are

shown in Figs. 9 and 10. These values can then be used as forcing terms in

(11). The stream function solved with zero bottom boundary condition is

shown in Fig. 11 and the vertical and meridional velocities obtained from

this stream function are shown in Figs. 12 and 13.

In an ideal case, the meridional circulations before (Figs. 7, 8) and

after (Figs. 12, 13) the calculation of (11) should be identical. There are,

however, some differences between those two sets of circulation. There are

several reasons for these differences. In the elliptic solver for (11) we

have to assume the top boundary condition; the choice of boundary

condition may not resemble real features. Another reason is that we

ignored the tangent factor, which is the second term in the left hand side

of the thermodynamic equation (2) when we construct the equation (11).

The numerical error in the different finite difference forms might also play

a role. The pattern in Figs. 12 and 13 are much smoother than that of Figs.

7 and 8 due to the smoothing effect of the elliptic solver.
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APPENDIX A

Zero Net Heating on Isentropic Surface

We are going to show that the global average of the density-

weighted net heating rates on an isentropic surface is close to zero. From

the continuity equation for the isentropic coordinates, (for example,

Andrews et al., 1987)
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where   Q  is the diabatic heating rate and σ  is the density in the isentropic

coordinates defined by
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∂σ
∂ φ

∂
∂

σ φ ∂
∂θ

σ
t y

v Q+ ( ) + ( ) =1
0

cos
cos (A3)

Using the definition of σ , we can rewrite (A3) as
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Multiplying   cosφ  and integrating (A4) in latitudes from South pole to

North pole eliminates the second term in (A4) and yields
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Integrating (A5) in altitude from the top of the atmosphere to θ∗

gives
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since     p = =σ 0 at the top of the atmosphere. θ∗  is an arbitrary potential

temperature whose surface does not meet the ground. Rearranging the

terms of (A6) gives
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Equation (A7) can be rewritten as
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where   M∗  is total mass between the isentrope θ∗  and the top of the

atmosphere defined by
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and thus we showed that the global average of the density-weighted

heating is negligible.

In the zonally-averaged formulation, (A10) cannot be used since the

relationship between the density and the heating rate is unknown

following the latitude circle. If we assume the covariance of the

perturbations   ′ ′σ Q  to be negligible, then (A10) is rewritten as
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which is a practical form for the heating rates adjustment in the zonal

mean model. In the middle atmosphere (A11) can be further simplified to

give
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since the slope of the isentropic surface on the isobaric coordinates are

very small and thus the density does not change much on an isentrope.

APPENDIX B

Zero Net Heating on Isobaric Surface

The flux form of the thermodynamic energy equation (3) can be

written by
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Integration of the above equation in latitude from South pole to

North pole eliminates the first term in the left hand side and thus
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The right hand side of (B2) is the net heating rates on an isobaric

surface. If we set this value be zero and integrate (B2) from z  to infinity in

altitude, then we get
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Therefore putting the net heating rates to be zero is consistent with

putting the global average of the vertical velocity multiplied by potential

temperature to be zero. If the potential temperature does not change

significantly on isobaric surfaces, then (B3) could be a close approximation

of (6a).

APPENDIX C

Stream Functions

The continuity equation (4) can be rewritten as
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Stream functions satisfying the above equation can be defined in

many ways. We are going to discuss three types of stream functions found

in literature. They are   ψ 1,   ψ 2 and   ψ 3 defined by
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The widely used stream functions are   ψ 1 and   ψ 2. We are going to

concentrate on these and postpone the discussion about   ψ 3 later.

  ψ 1 is the mass flux stream function and identical to ψ  in the Section

3b. It is found in some papers (e.g., Hitchman and Leovy, 1986, Holton and

Choi, 1988). Since   ψ 1 is presenting the real path of mass, it is useful for

diagnostic purpose (see Figs. 4 and 5).   ψ 2 is identical to χ  in the Section 4

and is also found in many papers (Garcia and Solomon, 1983; Solomon et

al., 1986; Brasseur et al., 1990, Garcia et al., 1992). Brasseur et al. (1990)

called   ψ 2 as the "velocity" stream function contrast to the "mass" stream

function of   ψ 1. There is an advantage in using   ψ 2 instead of   ψ 1. Since   ψ 2

does not include the density factor, its variation is close to linear (see Fig.

11) and thus it is easier to specify the top boundary condition in terms of

  ψ 2.

To use stream functions we need appropriate boundary conditions. If

we assume   w∗ to be zero at the surface and use the fact that   v ∗ is zero at

the both poles, then the boundary conditions for   ψ 1 will be

  ψ 1 0= a t     z = 0 (C3a)

  ψ 1 0= a t   φ π= ± / 2 (C3b)



without loss of generality. The same boundary conditions can be applied to

  ψ 2 as well. The above conditions, however, would be sufficient but not

necessary conditions for   ψ 2. The general boundary conditions for   ψ 2 are

    ψ 2 = c a t     z = 0 (C4a)

    ψ 2 = cez H/ a t   φ π= ± / 2 (C4b)

where   c is an arbitrary constant. If we have an additional condition,

    ∂ψ ∂2 0/ z =  at the top of the domain, which is not an unreasonable

approximation, then   c should be zero.

Among many types of stream functions only one function satisfies

the "conventional" definition which is that the streamlines are parallel to

the velocity field. To test the above point we take the differential of   ψ 1
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which is a condition of the streamline of   ψ 1 is parallel to the velocity field

    v w∗ ∗( ), . Likewise we can test   ψ 2 by the same method, which gives us
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which becomes identical to (C7) only when   ψ 2 0= .

The third stream function   ψ 3 is identical to   χmass
∗  used in Garcia and

Solomon (1983) and Solomon et al. (1986). Garcia and Solomon (1983)

noted that "isopleths of   χmass
∗  coincide with the streamlines of the velocity

field in the meridional plane". The above statement, however, is not true.

On the constant   ψ 3 line we get
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∂ψ ∂
∂ψ ∂

ρ ψ φ

ρ
3

3

3

0
3

0const

/
/

tan

(C9)

  ψ 3 coincides with the velocity field only at the both poles (  ψ 3 0= ) and

on the equator (  tanφ = 0) exactly. However,   ψ 3 may look similar to   ψ 1 in

the most region of the atmosphere (see Fig. 2 by Solomon et al., 1986).

The two equations in p.1387 in Garcia and Solomon (1983) are

incorrect. They should be read

    χ ρ χmass
∗ ∗= s (C10)

      
v w

s

∗ ∗ ∗( ) = × ∇,
cos

i
1

ρ θ
χmass (C11)

where they used notations   ρs and θ  instead of our   ρ0  and φ . The definition

of the "mass weighted stream function" in Solomon et al. (1986) should

also be corrected following (C10).
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Figure Captions

Fig 1. Zonal mean total heating rates (  K day-1) obtained from the LLNL 2-d
model with the eddy heating for the winter solstice condition. The
contour interval is 0.5.

Fig. 2. Vertical velocity (  mm sec-1) of the RMMC. The contour interval is 0.5.

Fig. 3. Meridional velocity (  m sec-1) of the RMMC. The contour interval is
0.5.

Fig. 4. Mass flux stream function (  kg m  sec-1 -1) constructed from the RMMC
of Figs. 2 and 3.

Fig. 5. Mass flux stream functions (  kg m  sec-1 -1). One integrated from the
South pole to North pole in (a), the other one integrated from the
North pole to South pole in (b), and the one matched between (a) and
(b) in (c). See the description in the text.

Fig. 6. Zonal mean heating rates (  K day-1) from the extended altitude model
for winter solstice condition. The contour interval is 1.

Fig. 7. Vertical velocity (  mm sec-1) obtained from the heating in Fig. 6. The
contour interval is 2.

Fig. 8. Meridional velocity (  m sec-1) obtained from the heating in Fig. 6. The
contour interval is 1.

Fig. 9. Heating rates (  K day-1) constructed by the RMMC in Fig. 7, 8 and
temperature through the thermodynamic energy equation. The
contour interval is 1.

Fig. 10. Zonal momentum forcing (  m sec  month-1 -1) constructed by the RMMC
in Figs. 7, 8 and zonal wind through the zonal momentum equation.

Fig. 11. Stream function (  m  sec2 -1) solved from the Equation (11) with the
thermal forcing in Fig. 9 and the momentum forcing in Fig. 10.

Fig. 12. Vertical velocity (  mm sec-1) obtained from the stream function in
Fig. 11. The contour interval is 2.



Fig. 13. Meridional velocity (  m sec-1) obtained from the stream function in
Fig. 11. The contour interval is 1.
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